Soil Fertilization With Medicinal Plant Processing Wastes Suppresses Tuta absoluta (Lepidoptera: Gelechiidae) and Aphis gossypii (Hemiptera: Aphididae) Populations

Environ Entomol. 2022 Dec 16;51(6):1172-1181. doi: 10.1093/ee/nvac071.

Abstract

Organic soil amendments can influence insect pest populations and the damage to plants they cause. In this study, the effects of medicinal plant processing wastes (MPPWs) applied as organic fertilizers on the host preference and performance of Tuta absoluta and Aphis gossypii were investigated on tomato and cucumber plants, respectively. Processing wastes of cumin, rosemary, thyme, artichoke, chamomile, fenugreek, and nettle were applied in four levels of 0, 20, 40, and 80 g dry matter/1kg culture media in pot experiments. Results showed the application of MPPWs, especially 80 g of nettle, reduced the number of T. absoluta eggs (from 0.8 to 0.4 egg/leaf) and their hatching percentage (from 90 to 76%). The highest and lowest number of aphids were observed in control (36 aphids/plant) and treated cucumbers with 80 g of cumin (18 aphids/plant). Also, the lowest intrinsic rate of increase (0.08 d-1) and net reproductive rate (20 offspring) of T. absoluta were observed in tomatoes fertilized with nettle. The highest and lowest net reproductive rate of A. gossypii were obtained on control and treated plants with 80 g of nettle, respectively. Results of damage assessment showed that the percentage of dry weight loss in the aphid-infested plants was reduced by the use of MPPWs, so that lowest weight loss was observed in the treatment with 80 g of nettle. In conclusion, soil amendment using MPPWs could result in lower pest populations and may improve plant tolerance to insect pest stress, thus these by-products could be considered a valuable tool in pest management.

Keywords: cucumber; organic fertilizer; pest management; tomato.

MeSH terms

  • Animals
  • Aphids*
  • Cucumis sativus*
  • Fertilization
  • Lepidoptera*
  • Plants, Medicinal*
  • Soil
  • Solanum lycopersicum*

Substances

  • Soil